
A Universal Language and Format to Describe Behavioral Tasks and Data

@KepecsLab

M. Wulf 1, M. Bosc 2, R. Ly 3, M. Avaylon 3, S. Starosta 1, O. Ruebel 3, and A. Kepecs 1

1 Washington University in St. Louis, St. Louis, MO, USA, 2 The Francis Crick Institute, London, UK,
3 Lawrence Berkeley National Laboratory, Berkeley, CA, USA

michael.wulf@wustl.edu, akepecs@wustl.edu

MOTIVATION
Technological advances have revolutionized how we measure and manip-
ulate brain activity, while behavioral technologies have lagged behind.
Recent developments introduced methods for quantifying movements and
poses but we lack general approaches to describe and communicate be-
havioral tasks, which are necessary to infer internal states not visible from
movements alone. Different laboratories use different systems, hardware,
and software to probe behavior, making it difficult to communicate task
design, share data, or reproduce experiments. Furthermore, neural data
archives require matching behavioral data archives for interpreting neural
activity. Here we developed a universal framework for designing, imple-
menting, communicating, and archiving behavioral tasks.

Our framework consists of two components, a description language and a
data format along with associated software tools. BEADL, the BEhavioral
tAsk Description Language, defines behavioral tasks as virtual finite state
machines that can be described graphically as an easy-to-understand flow di-
agram. In each state, the sensed behavioral output of a subject is defined as
events, causing transitions to other states. In addition, each state has a de-
fined list of distinct actions, that the task controlling environment is performing
(e.g., stimulus presentation). We use virtual inputs to generalize the descrip-
tive power of this framework. BEADL’s graphical representation can be ex-
ported as a corresponding XML-based definition. An NWB extension (Neuro-
data Without Borders) allows for storing of behavioral data capturing both the
BEADL task description together with the behavioral output of a subject.

APPROACH CONCLUSION
• BEADL’s graphical representation of task descriptions simplifies designing

and communicating trial-based behavioral tasks

• Inherent logic of behavioral tasks is exposed to ensure clarity, precision,
details in task designs, communication, and reproducibility

• Web-based BEADL graphical task designer with integrated BEADL-XML
generator

• NWB extension to further standardize data formats and to consistently link-
ing neural and behavior data with the contingencies fo the behavioral task

• This standardized framework allows more transparency and reproducibility
in behavioral experiments

BEADL Graphical Elements

The Foraging Task as a BEADL diagram

BEADL Designer

Neurodata Without Borders (NWB)
Extension for BEADL

• NWB extension stores BEADL task XML and schema alongside behavior-
al data associated with trials, states, and events in an NWB file

• Python API provides functions for importing Bpod data corresponding to a
BEADL task description and querying the BEADL state/event definition
from a recorded state/event

Funding

NeuroNex
NSF 2118583

BEADL Design Workflow

BEADL-XML

BEADL

BEADL Design
Environment

Experiment Control &
Analysis Environment

BEADL
Parser

Code
Generation

Target
Hardware

BEADL
Object

Annotations

Data

StateName

max_duration: x
output action

input event 1

input event 2
grace period: y

2
1

3

4

Resources
Please visit beadl.org for addition-
al information, documentation, and
upcoming features! Scan me!

The default BEADL state definition.
Each state has a name, a max. duration, a list of output actions, and a list of input events.

Each state can have a maximum duration specified in seconds. If it expires, a specific stateEx -
pired event will be triggered. If the duration is set to infinite (inf), this feature is disabled.
Trial-dependent parameters can also be used to define the duration of a state.

For each individual state, specific input events can be defined that cause transitions to other
states when they occure. Those events can either be inferred by the subject’s behavior or by
pre-defined conditions (e.g. the maximum state duration).

In each state, an abritrary number of output actions can be defined that the experiment controlling
hardware can perform (e.g. stimulus presentation). Besides those “basic” action, more hard-
ware-oriented advanced actions can also be defined in form of callback functions.

1

2

4

3

BEADL Graphical Design Application
• Web application running on Amazon Web Services (AWS)

• Easy-to-use, drag-and-drop graphical editor to define behavioral task as BEADL diagrams

• Individual user workspaces to store different behavioral tasks

• Pre-defined BEADL Use Cases as templates available

• Definition of trial-dependent parameters

• Abstracting control hardware elements, actions, and events through descriptors

• Optional constrains with dependencies to trial-dependent parameters

• Export BEADL-XML description to be used for task executing (currently for Bpod/MATLAB)

Example of Abstract Task Representations

trials

w
at

er
 [µ

l]

trials

w
at

er
 [µ

l]left port

right port

A more ambiguous representation of the Foraging Task as cartoon-like figure impeding reproducibility

Definition of trial-dependent parameters Mapping of hardware resources onto descriptors

Definition of actions being performed by the
task-controlling system during task execution

Definition of input events (actions performed by
the subject) to trigger state transitions

BEADLTaskSchema

BEADLTaskProgram

EventTypesTable

Act ionTypesTable

StateTypesTable

/ g en er al

/ acq u is it io n

EventsTable Act ionsTableStatesTable

Task

TaskArgumentTable

TrialsTable (TimeI ntervals)

/ in t er v als

