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Houston Neuronex
Fruitfly Hemibrain Modularity

• Dr. Xaq Pitkow & Dr. Alex Kunin, Baylor College of
Medicine; Dr. Krešimir Josić, University of Houston.

• Overview of modularity and anatomy in fruitfly Hemibrain dataset;
clustering using a multi-resolution algorithm.
• At coarsest scale, modularity is maximized by 8 cluster partition.
• Study learned community structure vs. identified anatomical partitions.

Morphological renderings of sample of 120 neurons from each cluster (88 from cluster 8),
color-coded by identity.

Predictive Coding & Backpropogation

• Dr. Robert Rosenbaum, University of Notre Dame.
• Relationship between predictive coding & backpropagation for training

feedforward artificial neural networks on supervised learning tasks.

Magnitude of activations, beliefs, and prediction errors in CNN pre-trained on ImageNet.
• Prediction errors approximated by gradients of the loss.
• Large prediction errors can occur, even when image & network guess

consistent with label.
• Contradicts interpretation of prediction errors as measurements of “surprise. ”
• e.g., eagle’s head has high error, even though white head determines its classification.

Dynamic Routing Tasks for Neural Networks

• Dr. Ryan Pyle & Dr. Ankit Patel, Baylor College of
Medicine.

• Dynamic routing task: task inputs determine the routing pattern, data
inputs determine what is to be routed.
• C: MPHATE showing how hidden network states evolve.

• High initialization learns each routing independently, while standard initialization learns a complex
representation that re-uses relevant information across related tasks or stimuli.

• D: Agreement between the PNTK predictions and the MPHATE clusterings.
• E: Independent representations (high init) learn tasks quicker; shared

representations (standard init) take longer, but eventually generalize better.

Subbotin Graphical Models
Background

• Estimating intrinsic functional connectivity using neuronal activity data
from two photon calcium imaging.
• Pairwise statistical relationships in contemporaneous neuronal activity.

• Probabilistic graphical models: sparse, data driven conditional
dependency structures in high-dimensional data.

Θbc = 0 ⇐⇒ B ⊥ C | A

• Challenge: neuron firing in calcium imaging data represented by spikes,
i.e. scarce extreme values.
• Typical exponential family graphical models typically fit to mean, not extremes.
• Multi-step pre-processing leads to data loss, error propogation.

• Develop new class of graphical models for single-step analysis data where
the important information lies in rare extreme outliers.
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Expected vs. typical estimated functional connections from graphical models.

Formulation

• Utilize ideas from robust modeling.
• Parameter estimates less sensitive to rare extreme outliers.

• Based around Subbotin distribution:

f (ϵ, ν) = ν

2σΓ(1/ν)
e−| ϵ

σ|
ν

• ν = 2: Gaussian distribution.
• ν < 2 : heavy-tailed, larger tolerance of predicting extreme as non-extreme.

• Extreme value problem: use Subbotin distribution with ν > 2.
• Thin-tailed, forces model to more accurately predict extreme values.

Left: Subbotin distribution, ν = 1. Right: Subbotin distribution, ν = 10.

• Construct joint graph distribution from node conditionals:
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• Neighborhood selection approach for estimation: ℓν norm regression.

Empirical Studies

• Calcium imaging scan from Allen Brain Atlas Brain Observatory.
• 227 neurons in visual V1 cortex during drifting grating stimulus.
• Compare estimated functional connectivity networks from Subbotin and

Gaussian graphical models.

Functional connectivity graphs from Gaussian (top) and Subbotin (bottom) graphical models.

• Visualize fluorescence traces of hub neurons, edge neighbors.
• Subbotin edges contain contemporaneous spikes; Gaussian edges do not.

Hub neuron traces (top) and edge neighbor traces (bottom) from Gaussian (left) and
Subbotin (right) graphical model functional connectivity estimates.

• Compare proportion of estimated functional connections from graphical &
functional connectivity models with same neuron tuning category.

• Subbotin graphical model does best at matching tuning categories.

Model Angular Tuning Frequency Tuning
Subbotin (ν = 10) 0.578 0.642
Gaussian Glasso 0.429 0.449
Quantile (q = 0.99) 0.494 0.491
Copula (b = 30) 0.292 0.262
Hawkes 0.140 0.335
Transfer Entropy 0.243 0.193
VAR 0.112 0.387
Linear-Nonlinear 0.460 0.434

Conclusion

• Develop & study new class of graphical model distribution for conditional
dependencies with respect to extreme value observations.

• More sensible functional connectivity estimates than current graphical
modeling techniques for two-photon calcium imaging data.

• Future work: intrinsic functional connectivity network architectures on
larger data, relationship between functional and structural connectivity.
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