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BL-OG enables genetically targeted excitation Early postnatal hyperexcitation of L5 pyramidal neurons leads to selective deficits in motor learning
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Layer 5 was identified as a region of interest due to its

roles Iin cortical computation and relevance to

neuropsychiatric disorders including ASD:

* Integration of signals from higher cortical layers

* Projection to subcortical regions including the thalamus
and striatum

* Top-down control of behavior (Naka & Adesnik, 2016)
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 Kilosort (Pachitariu et al., 2016) and Phy were used for spike sorting.
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 For LFP analysis, data were downsampled to 1000 Hz by saving the i %5' c ! ———————~——— Left: mean LFP traces confirm that the
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following a bandpass filter from 4 to 121 Hz that improved the
decomposition. Power spectral density was estimated using the multitaper
method in all analyses (Bokil et al., 2010).
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