

A quasi-static approach to modeling soft-tissue structures

Bidisha Kundu, Stephen M Rogers, and Gregory P. Sutton

School of Life Sciences, University of Lincoln, UK

Poster 579.20 Abstract 9763

Medical

Council

Research

Abstract

- We have studied the feeding behavior of Aplysia Californica
- Comparatively, a computationally fast mathematical model has been provided
- Quasi-static formulation has been followed in this modeling
- Balancing only muscle forces for soft-tissue type structure(buccal mass), dynamical equilibrium positions have been found.

Introduction

Original Complete Newtonian (2nd Order) Model

From Newton's law of motion: *Mass x Acceleration*= *Total Force*

$$(m\ddot{y} + F_2)cos(\theta) = (M\ddot{x} - F_1)sin(\theta)$$

m: mass of I3 muscle, M: mass of the radula

However, the existing model is computationally expensive.

This model needs 14 seconds to simulate 1 second of feeding behavior.

Observations

- Change in velocity or acceleration is negligible
- Elastic energy is <u>over four orders of magnitude</u> higher than the Kinetic energy

Quasi-static reformulation

$$(m\ddot{y} + F_2)cos(\theta) = (M\ddot{x} - F_1)sin(\theta)$$
$$F_2 Cot(\theta) + F_1 = 0.$$

Equilibrium point is the position of the radula at that instant

Methods

- These equilibrium points were found numerically using Newton's method
- Python scipy function fsolve has been used to find the root

Results **MN Frequency Function** I2 Activating frequency I3 Activating frequency

Firing frequency function of motor neurons

Displacement of the radula modelled using 2nd order (turquoise) and quasi-static (dashed, green) formulations

The difference is almost negligible

Conclusions

This detailed biomechanical model is now computationally cheap

Great reduction of computational time

Future Work

We will use this quasi-static biomechanical model to study the neuronal control including feedback mechanism

Acknowledgements

This work was funded by UKRI Grant Number (MR/T046619/1), part of the NSF/CIHR/DFG/FRQ/UKRI-MRC Next Generation Networks for Neuroscience Program.

References

- [1] Sutton, G.P et al., *Biological cybernetics* 91(5), 333–345 (2004)
- [2] Sutton, G.P. et al., Journal of comparative physiology A 190(6), 501–514 (2004)
- [3] https://www.reeflex.net/tiere/5352_Aplysia_californica.htm
- [4] McManus et al., *J Neurophysiol* 112: 778–791, 2014.