The role of higher-order thalamic inputs in generating oscillatory dynamics in sensory neocortex:
Integrated electrophysiological, interluminescence and fluorescence studies
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Nuclei of the thalamus are well situated to implement top-down prioritization signals as well as organize context across distinct corti- Luciferase
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In a biophysical model from our group of beta events in neocortex, proximal and distal excitatory drive of layer 5 pyramidal cells
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