
Jeremy Murphy1, Eric Klein1, Emmanuel L. Crespo2, Mansi Prakash2, Stephanie Jones1, Ute Hochgeschwender2, Christopher I. Moore1

1 Brown University, Providence, RI | 2 Central Michigan University, Mount Pleasant, MI 

The role of higher-order thalamic inputs in generating oscillatory dynamics in sensory neocortex:
Integrated electrophysiological, interluminescence and fluorescence studies

The selective and flexible prioritization of specific sensory inputs aligned to behavioral goals is central to complex behavior. The en-
hancement of some sensory representations as well as the suppression of others occurs in the neocortex during this goal driven 
perceptual prioritization. A question that remains to be fully answered is how this enhancement and suppression is implemented at 
the neuronal circuit level. 

Nuclei of the thalamus are well situated to implement top-down prioritization signals as well as organize context across distinct corti-
cal areas [1]. The posterior medial nucleus (POm) is a higher-order thalamic nucleus that is highly interconnected with the rodent so-
matosensory and motor systems. It provides excitatory inputs to layers 1 and 5 of barrel field of primary somatosensory cortex (SI) 
[2]. This canonical top-down arrangements of inputs situates it excellently to modulate perceptual representations in cortex [3]. Oscil-
latory activity in the field potentials of neural ensembles are associated with selective prioritization by a large body of work [1,4,5]. 
Interactions between thalamus and cortex have been implicated in a variety of oscillatory rhythms [4]. 

Here we present preliminary data from anesthetized mice in which laminar extracellular recordings were preformed in 
cortex. We then, 
1) Simultaneously recorded from spontaneous spiking in POm 
2)  Briefly optogenetically inhibition POm, and 
3) Imaged the spontaneous activity of POm axons in superficial cortical layers using widefield fluorescence imaging of ge-
netically encoded calcium indicators

Our data indicate that POm may play a role in the induction of a wide band of oscillations in cortex, and we believe this may be con-
text dependent. We present our group's bioluminescent optical synapse tool that can be utilized to exclusively target specific  pre- 
and post-synaptic partners with optogenetically driven up- or down regulation of synaptic efficacy in an activity dependent manner. 
We present preliminary data demonstrating that this tool can be used to dissect the role of specific interactions between POm excit-
atory projections and different neuronal sub-types.
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Paralemniscal thalamic nuclei likely play a role in selective prioritization of sensory representations in cortical regions. These nuclei 
include the pulvinar in humans and primates in the visual system and POm in the rodent somatosensory system [3]. POm is inter-
connected with SI in a manner that parallels the pulvinar in the visual system, sending excitatory projections to layers 1 and 5 and 
receiving abundant projections back from layer 6 CT cells [2]. POm is also heavily interconnected with other cortical and subcortal 
regions, particularly with sencondary somatosensory cortex, primary motor cortex and the striatum.  This suggests that POm may 
serve as an important coordinator and modulator of top-down selective prioritization.

In layers 1 and 5 of SI, POm has distinctive synaptic targets, including the proximal and distal dendrites of layer 5 pyramidal cells, as 
well as the dendrites of layer 2/3 inhibitory interneurons. POm is thus well situated to play a role in active dendritic currents of layer 5 
pyramidal neurons, a mechanism that has been proposed as a gate to perception [5].

 Neocortical oscillations are associated with selective sensory prioritization by a strong body of research in humans, primates, and 
rodents [1]. In human studies, as measured by M/EEG, cortical oscillations in the alpha band (8-14 Hz) and short bursts of beta os-
cillations (15-29 Hz) are both correlated with successful detection of threshold stimuli [6]. Both alpha power and beta burst frequency 
increase over cortical regions that represent disattended sensory representations, suggesting that they are markers of suppression 
of non-relevant information [7,8]. 

In a biophysical model from our group of beta events in neocortex, proximal and distal excitatory drive of layer 5 pyramidal cells 
along with possible inhibition of interneurons that themselves tonically inhibit the apical dendrites of the layer 5 pyramidal cells, leads 
to the drive of current up and down the length of layer 5 pyramidal cell apical dendrites. This pattern of current flow is able to pro-
duce the distinct shape of a beta event [9]. POm's excitatory synaptic pattern of inputs to S1 make it an excellent candidate for beta 
event generation. 

Model of cortical beta event:

I) Proximal 10 Hz bursting onto layer 5 pyra-
midal neurons drives Current up the apical 
dendrites

II) Dendritic calcium spiking in the distal den-
drites drives current down the dendrites 

III)  Continued EPSPs in the proximal den-
drites in addition to the arrival of current 
back from the apical dendrites initiates fur-
ther bursting driving current back up the 

POm single unit bursts and tonic firing coincide with slow (1-8 Hz) oscillatory transients in SI 
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Bioluminescent optical synapses can modulate the drive of specific pre- and postsynaptic part-
ners

Prakash, Murphy, et al. (2022): Up-regulating the synaptic pairing of thalamic excitatory projec-
tions to cortical PV interneurons using a bioluminescent optical synapse increases gamma band 
(30-100 Hz) oscillations 

Preliminary data suggest that the up-regulation excitatory drive from POm to broad GABAergic 
interneurons in S1b produces slow oscillations in S1b (1-8 Hz). By using available transgenic 
lines we plan to target specific interneuron subtypes with this setup

VGAT ChR2 transgenic

The oscillatory markers of sensory prioritization are irregular in many neurological disorders, such as ADHD, autism spectrum disorders, Par-
kinson's disease, and schizophrenia [10]. Understanding the mechanistic, circuit level processes that give rise to the various oscillatory 
events in the brain would provide tremendous insight in the pathology of these disorders. Our work aims to understand these circuit mecha-
nisms. We are currently implementing imaging (wide field and 2-p) and high-density extracellular electrophysiology of neocortex and thalamic 
nuclei in awake behaving mice. 
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